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2.2 Linear system, Bäcklund transformation and hidden symmetry 4

2.3 Nonlocal conservation laws 4

3. Generalized integrability in the SDYM 7

4. New conserved currents in the SDYM 8

4.1 Cho-Faddeev-Niemi-Shabanov decomposition 8

4.2 Self-dual equations 9

4.3 Conserved currents 11

4.4 Trivially conserved currents 12

5. Conclusions 13

A. Canonical four momenta and field equations 14

1. Introduction

A powerful tool in the theory of topological solitons is the derivation of lower bounds for the

energy (or Euclidean action) in terms of topological charges. Together with these bounds,

in some cases one may derive first order equations (so-called Bogomolny equations) such

that any field configuration obeying these Bogomolny equations automatically saturates

the topological lower bound and is a true minimizer of the energy (or Euclidean action)

functional. Obviously, any field configuration obeying the Bogomolny equations automat-

ically obeys the original second order Euler-Lagrange equations, whereas the converse is

not true in general.

In addition to providing true minimizers of the energy functional, these Bogomolny

equations, due to their more restrictive nature, tend to enhance the number of symmetries

and conservation laws. Sometimes, there exist infinitely many symmetries and infinitely

many conservation laws for the Bogomolny equations. Further, the Bogomolny equations

are usually not of the Euler-Lagrange type, therefore for those symmetries which are not

symmetries of the original second order system, the issue of conservation laws has to be

investigated separately, that is, Noether’s theorem does not apply. A theory where this

happens is, for instance, the CP(1) model in 2+1 dimensions. For this theory both the
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infinitely many symmetries and the infinitely many conservation laws of the Bogomolny

sector have been calculated, e.g., in [1], and, indeed, they turn out to be different. Similar

investigations for gauge theories have been performed recently. In the case of the Abelian

Higgs model, an equivalent pattern has been found, i.e., there are infinitely many conserved

currents in the Bogomolny sector, and Noether’s theorem does not apply, see [2]. A slightly

different scenario is realized in the Abelian projection of Yang-Mills dilaton theory. There,

too, exists a Bogomolny sector, but this theory has infinitely many symmetries already on

the level of the Lagrangian, therefore the symmetries and conservation laws are related by

Noether’s theorem, see [3].

In the case of SU(2) Yang-Mills theory, the solutions which minimize the Euclidean

action functional are known as instantons, and the Bogomolny type first order equations

are the self-duality equations [4]–[7]. The symmetries of the self-dual sector of SU(2)

Yang-Mills theory have been studied by various authors [8]–[17]. The result is that the

system posesses infinitely many symmetries and that almost all of them are nonlocal when

expressed in terms of the original fields. A recent review of this issue can be found in [18], to

which we refer the reader for further information and additional references. Conservation

laws of self-dual Yang-Mills theory related to the non-local symmetries mentioned above

have been studied, e.g., in [12]–[17].

A slightly different, more geometric approach to the self-dual Yang-Mills (SDYM)

equations focusing directly on their integrability has been initiated by R. Ward [19]. In that

approach twistor methods are employed, and the use of twistor methods in the investigation

of the SDYM and their conservation laws has played an important role subsequently (for

some recent results, see [20]–[23]).

Another approach to integrability and conservation laws has been proposed in [24],

where a generalized zero curvature representation suitable for higher-dimensional field the-

ories was developed, analogously to the zero curvature representation of Zakharov and

Shabat, which provides integrable field theories in 1+1 dimensions. Among other results,

it was demonstrated in that paper that the SDYM permit a generalized zero curvature rep-

resentation. But still only finitely many conservation laws have been provided for self-dual

Yang-Mills theory in ref. [24]. It is the purpose of the present paper to further develop

the issue of integrability and conservation laws of the self-dual sector of SU(2) Yang-Mills

theory along these lines. We will find another set of infinitely many conservation laws

by explicit construction. The corresponding conserved currents are nonlocal in terms of

the original Yang-Mills field, but they will be local in terms of a well-known nonlocal

field redefinition which we shall use in the sequel. In contrast to the conserved currents

found previously, the ones we shall present below are given by manifestly Lorentz covariant

expressions and may, therefore, easily be generalized to different space time metrics and

dimensions. Given the relevance of self-dual Yang-Mills theories both for strong interac-

tion physics and in a more mathematical context, we believe that the discovery of these

additional conserved currents is of some interest.

We want to remark that in a recent paper devoted to similar problems [25], an in-

vestigation of integrability in the sector of ZN string solutions of Yang-Mills theory has

been performed. ZN string solutions are effectively lower dimensional solutions, but, nev-
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ertheless, they also belong to the self-dual sector. Further, the integrability of self-dual

Yang-Mills theories on certain four-dimensional product manifolds has been used in [26, 27]

to demonstrate the integrability of abelian and nonabelian Higgs models on general Rie-

mannian surfaces.

Our paper is organized as follows. In section 2 we present a brief overview of some

known results on the self-dual Yang-Mills (SDYM) equations. Specifically, we present

infinitely many nonlocal conserved currents as constructed by Prasad et al and by Pa-

pachristou. This overview shall serve later on to relate our own findings to these already

known results. In section 3 we recapitulate how the self-dual sector of SU(2) Yang-Mills

theory may be recast into the form of the generalized zero curvature representation. In

section 4 we introduce the Cho-Faddeev-Niemi-Shabanov (CFNS) decomposition of the

gauge field and re-express the self-dual equations using this decomposition. Next, we write

down the currents in terms of the decomposition fields and prove that they are conserved.

Section 5 contains our conclusions. In the appendix we display the canonical four momenta

and field equations which we need in the main text.

2. Some known facts about the SDYM

2.1 J formulation of the SDYM

The self-dual sector of SU(2) Yang-Mills theory in Euclidean space-time is constituted by

gauge fields Aa
µ satisfying the following equations

F a
µν =∗ F a

µν , (2.1)

where

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + ǫabcAb

µA
c
ν ,

∗F a
µν ≡ 1

2
ǫµνρσF

aρσ (2.2)

It is convenient to rewrite them as

F a
yz = 0, F a

ȳz̄ = 0, F a
yȳ + F a

zz̄ = 0, (2.3)

where the new independent variables are defined as

y =
1√
2
(x1 + ix2), ȳ =

1√
2
(x1 − ix2), z =

1√
2
(x3 − ix4), z̄ =

1√
2
(x3 + ix4).

Defining the self-dual gauge fields as

Aa
y = g−1

1 ∂yg1, Aa
z = g−1

1 ∂zg1, Aa
ȳ = g−1

2 ∂ȳg2, Aa
z̄ = g−1

2 ∂z̄g2 (2.4)

we identically fulfill the first two equations in (2.3). Here, g1, g2 are arbitrary group elements

in SU(2). Then the third expression leads to a nontrivial equation giving an equivalent

formulation of the self-dual equations

F [J ] ≡ ∂ȳ

(

J−1∂yJ
)

+ ∂z̄

(

J−1∂zJ
)

= 0, (2.5)

where

J = g1g
−1
2 . (2.6)

In other words, solutions of the self-dual sector are defined by eq. (2.5).
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2.2 Linear system, Bäcklund transformation and hidden symmetry

There is a formulation of the SDYM equations in terms of a linear system [8]–[10]. Namely,

consider an auxiliary matrix field ψ defined by the following set of equations

∂z̄ψ = λ
(

∂yψ + J−1Jyψ
)

, −∂ȳψ = λ
(

∂zψ + J−1Jzψ
)

. (2.7)

In fact, this is just the Lax pair formulation. The SDYM equations (2.5) are derived as a

consistency (integrability) condition ψz̄ȳ = ψȳz̄.

Further, it is possible to find the related Bäcklund transformation (BT) [8]. It is given by

J
′−1J ′

y − J−1Jy = λ(J
′−1J)z̄, J

′−1J ′
z − J−1Jz = λ(J

′−1J)ȳ. (2.8)

If J is a solution of SDYM then J ′ is a new solution of SDYM. Further, this BT is an

infinitesimal BT i.e., a new solution generated by the BT may be found performing an

infinitesimal transformation which leaves the SDYM equation invariant. The pertinent

transformation reads

J−1δJ = −ψTaψ
−1αa (2.9)

where Ta is a basis of the Lie algebra for the gauge fields and αa are infinitesimal parameters.

Indeed, if we assume that J ′ = J + δJ then we get the BT.

This symmetry transformation gives the following commutator

[δα, δβ ]J = αaβbCc
ab

d

dλ
(λδcJ), (2.10)

where Cc
ab are the structure constants of the Lie algebra. If we expand ψ =

∑∞
n=0 λ

nψ(n)

then we get the Kac-Moody algebra

[δ(m)
α , δ

(n)
β ]J = αaβbCc

abλδ
(m+n)
c J, (2.11)

where δ(n) is defined as J−1δJ =
∑∞

n=0 λ
nJ−1δ(n)J and δ(n)J = −J∑∞

n=0 ψ
(n)Tψ(m−n).

In this way, one may explain the hidden (infinite) symmetries observed by L. Dolan [11].

It is precisely the symmetry transformation (2.9) mentioned above.

2.3 Nonlocal conservation laws

The SDYM in J formulation is an Euler-Lagrange system, and the Noether theorem applies.

Indeed, eq. (2.5) may be easily derived from the Euclidean action

S =

∫

d4xTr[(J−1∂µJ)(J−1∂µJ)]. (2.12)

Therefore, the derivation of an infinite set of symmetries indicates that there should exist

infinitely many conserved quantities, as is expected in any case for an integrable system.

In fact, several families of nonlocal conserved currents have been found. All these con-

structions use in an essential way the J-formulation of the self-dual sector and therefore

are unique for 4-dimensional Euclidean space-time. Moreover, manifest Lorentz covariance

is lost since we introduced the complex variables y, z. On the other hand, this formulation
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of the self-dual equations possesses the advantage that equation (2.5) has the form of a

conservation law.

The first set of conserved currents was discovered by Prasad et al [12, 13]. The construction

reads as follows. Let us rewrite the SDYM equation as

(v(n)
y )ȳ + (v(n)

z )z̄ = 0 and v(1)
y = J−1Jy, v

(1)
z = J−1Jz, (2.13)

where v
(n)
y , v

(n)
y , n = 1, 2, 3 . . . are higher conserved currents, which can be constructed by

induction (iteratively). One has to define a set of potentials X(n)

v(n)
y = ∂z̄X

(n), v(n)
z = −∂ȳX

(n), X(0) = I. (2.14)

Then, if the n-th current has been found, the next one is given by the formula

v(n+1)
y = (∂y + J−1Jy)X

(n), v(n+1)
z = (∂z + J−1Jz)X

(n). (2.15)

A different family of nonlocal conservation laws, nontrivially related to Prasad’s ones, was

presented by Papachristou [14]. The basic idea was to reformulate the SDYM equation

using the potential symmetries. At the beginning we have a SDYM field J obeying F [J ] = 0

and introduce a potential X (similarly as in Prasad’s work)

J−1Jy ≡ Xz̄, J−1Jz ≡ −Xȳ. (2.16)

The consistency (integrability) condition (Xz̄)ȳ = (Xȳ)z̄ gives F [J ] = 0, whereas the

condition (Jy)z = (Jz)y leads to the potential SDYM equation (PSDYM)

G[X] ≡ Xyȳ +Xzz̄ − [Xȳ,Xz̄ ] = 0. (2.17)

The point is that this expression may also be written as a conservation law

∂ȳ

(

Xy −
1

2
[X,Xz̄ ]

)

+ ∂z̄

(

Xz +
1

2
[X,Xȳ ]

)

= 0. (2.18)

Therefore, we arrive at a new current. This procedure may be repeated. We introduce a

new potential Y to the last formula

Xy −
1

2
[X,Xz̄ ] = Yz̄, Xz +

1

2
[X,Xȳ ] = Yȳ (2.19)

and consider the consistency condition (Xy)z = (Xz)y. As a result we derive a new PSDYM

equation which has the form of a conservation law, as well. One may continue with this

procedure and, at least in principle, derive an infinite set of conserved quantities. There

is some similarity between the two sets of currents, however, the relation between them is

non-trivial [14].

The importance of the PSDYM equation originates in the observation that there is a one-

to-one correspondence between symmetries of the SDYM and PSDYM, as it was formulated

in the theorem by Papachristou [15]

δX = αΦ is a symmetry of G[X] ⇔ δJ = αJΦ is a symmetry of F [J ], (2.20)

– 5 –
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whereX → X ′ = X+αΦ is a transformation which leaves the PSDYM invariant: G[X ′] = 0

if G[X] = 0, or in other words

δG ≡ H(Φ) = Φyȳ + Φzz̄ + [Xz̄,Φȳ] − [Xȳ,Φz̄] = 0. (2.21)

The next step is to find a Bäcklund transformation generating the symmetries of the

PSDYM [15]

λΦ′
z̄ = Φy + [Xz̄,Φ], λΦ′

ȳ = −Φz + [Xȳ,Φ], (2.22)

provided X is any given solution of the PSDYM equation, for example (2.16). Then

starting with any local symmetry of the PSDYM Φ(0) (or the SDYM as they are in one-

to-one correspondence) one is able to construct an infinite tower of symmetries {Φ(n)}∞n=0.

Moreover, as the Bäcklund transformation (2.22) immediately provides a conservation law

we get an infinite series of conserved quantities, each based on a particular local symmetry

of the SDYM equations.

The extensive analysis of such families of conserved quantities has been performed by

Papachristou [16]. He introduced a recursion operator R̂ which transforms one symmetry of

the PSDYM equation into another one and is given by a formal integration of the Bäcklund

transformation (2.22)

R̂ ≡ ∂−1
z̄ (∂y + [Xz̄ , ]). (2.23)

To be precise, he constructed an infinite set of Lie derivatives ∆(n)X = Φ(n), where Φ(n) is

a symmetry of the PSDYM equation as

∆
(n)
k X = R(n)LkX. (2.24)

Here Lk is a symmetry operator for the PSDYM equation corresponding to a given local

symmetry. The results may be summarized as follow.

For internal symmetries Φ ≡ ∆kX ≡ LkX = [X,Tk], where Tk is a basis for the su(2)

Lie algebra of the gauge fields, we get that the infinite set of transformations

∆
(n)
k X = R(n)LkX = R(n)[X,Tk] (2.25)

obeys the Kac-Moody algebra

[ ∆
(m)
i ,∆

(n)
j ]X = Ck

ij∆
(m+n)
k X. (2.26)

Once again, it is exactly the hidden symmetry of SDYM found by L. Dolan.

Finally let us discuss the nine local (point) symmetries of the SDYM

L1 = ∂y, L2 = ∂z,

L3 = z∂y − ȳ∂z̄, L4 = y∂z − z̄∂ȳ,

L5 = y∂y − z∂z − ȳ∂y + z̄∂z, L6 = 1 + y∂y + z∂z ,

L7 = 1 − ȳ∂y − z̄∂z, L8 = yL6 + z̄(y∂z̄ − z∂ȳ),

L9 = zL6 + ȳ(z∂ȳ − y∂z̄) (2.27)

– 6 –



J
H
E
P
0
9
(
2
0
0
8
)
0
1
4

The subset {L1 . . . L5} provides an infinite set of transformations

∆
(n)
k X = R(n)LkX, k = 1 . . . 5 (2.28)

satisfying also a Kac-Moody algebra. Additionally, L6 and L7 give two sets of infinitely

many transformations

∆(n)X = R(n)LX, L = L6 or L7 (2.29)

leading to two copies of the Virasoro algebra. Generators L8 and L9 probably do not result

in any algebraic structure.

Obviously, conservation laws do not have to correspond to conserved charges. This

happens, e.g., if the spatial integrals of the fluxes (charge densities) do not converge. As

observed by Ioannidou and Ward [17], the nonlocal currents found by Prasad [12] and

Papachristou [14, 15] lead to densities which diverge after integration. To be precise,

it was discussed for the chiral model in (2+1) dimension but these results should hold

also for SDYM. A general argument is the following. All nonlocal conserved currents of

type [12, 14 – 16] are constructed using the integral operator ∂−1 and, further, the instanton

field is power-like localized. Thus, after a sufficient number of integrations we arrive at a

divergent quantity.

3. Generalized integrability in the SDYM

Here, following [24], we very briefly describe the self-dual sector of SU(2) Yang-Mills theory

in the language of generalized integrability. The basic step in this framework is the choice

of a reducible Lie algebra G̃ = G⊕H, where G is a Lie algebra and H is an Abelian ideal (in

practice, a representation space of G), together with a connection Aµ ∈ G and a vector field

Bµ ∈ H. A system possesses the generalized zero curvature representation if its equations

of motion may be encoded in two conditions. Namely, the flatness of the connection

∂µAν − ∂νAµ + [Aµ,Aν ] = 0 (3.1)

and the covariant constancy of the vector field

∂µBµ + [Aµ,Bµ] = 0. (3.2)

Usually, one assumes a trivial connection i.e., Aµ = g−1∂µg, where g ∈ G. In this case, one

can easily construct conserved currents

Jµ = gBµg
−1.

We say that a system is integrable if the number of currents is infinite. As it is equal to

the dimension of the Abelian ideal H, the integrability condition is simply dim H = ∞.

Let us now express the self-dual equations of SU(2) YM in this manner. Again, we use

the representation of the self-dual equations via the equation for the J matrix. In order to

– 7 –
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accomplish that we introduce a flat connection Aµ and a covariantly constant vector Bµ

taking values in an Abelian ideal in the following way

Aµ = J−1∂µJ = Ar
µTr (3.3)

Bȳ = Ar
ȳSr, Bz̄ = Ar

z̄Sr, By = 0, Bz = 0, (3.4)

where Tr, Sr form a basis satisfying

[Tr,Ts] = Cu
rsTu, [Tr,Ss] = Cu

rsSu, [Sr,Ss] = 0.

Obviously, the connection is flat as it is a pure gauge configuration. Moreover the condition

for the vector field i.e., DµBµ = 0 is equivalent to the self-dual equation (2.5). One can

construct conserved currents

Jȳ = Ar
ȳJSrJ

−1 Jz̄ = Ar
z̄JSrJ

−1, Jy = 0, Jz = 0, (3.5)

then, the conservation laws are just the self-dual equations (2.5). More conservation laws

may be derived as discussed in the previous section.

Of course, the obtained result is not surprising. A system which possesses the stan-

dard zero curvature representation admits also the generalized zero curvature formulation.

However, there is a simple prescription how to construct an infinite family of additional

conserved currents for a model with generalized zero curvature formulation. In general,

they are spanned by the canonical momenta conjugated to the field degrees of freedom. It

is important to check whether such currents can be also found for the self-dual sector of the

SU(2) YM theory, and, if the answer is positive, what is their relation with the standard

non-local conservation laws described before.

4. New conserved currents in the SDYM

4.1 Cho-Faddeev-Niemi-Shabanov decomposition

In order to derive such conserved quantities in an exact form we perform a nonlocal change

of variables known as the Cho-Faddeev-Niemi-Shabanov decomposition [28]–[33]. The de-

composition
~Aµ = Cµ~n+ ∂µ~n× ~n+ ~Wµ (4.1)

relates the original SU(2) non-Abelian gauge field with three fields: a three component

unit vector field ~n pointing into the color direction, an Abelian gauge potential Cµ and a

color vector field W a
µ which is perpendicular to ~n. The fields are not independent. In fact,

as we want to keep the correct gauge transformation properties

δna = ǫabcnbαc, δW a
µ = ǫabcW b

µα
c, δCµ = naαa

µ (4.2)

under the primary gauge transformation

δAa
µ = (Dµα)a = αa

µ + ǫabcAb
µα

c (4.3)

– 8 –
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one has to impose the constraint (nb
µ ≡ ∂µn

b etc.)

∂µW a
µ + CµǫabcnbW c

µ + naW bµnb
µ = 0. (4.4)

In the subsequent analysis we assume a particular form for the valence field W a
µ . It is

equivalent to a partial gauge fixing where one leaves a residual local U(1) gauge symmetry.

Namely,

W a
µ = ρna

µ + σǫabcnb
µn

c, (4.5)

where ρ, σ are real scalars. For reasons of convenience we combine them into a complex

scalar v = ρ+ iσ. Then the Lagrange density takes the form (uµ ≡ ∂µu etc.)

L = F 2
µν − 2(1 − |v|2)Hµν + (1 − |v|2)2H2

µν

+
8

(1 + |u|2)2
[

(uµū
µ)(DνvDνv) − (Dµvū

µ)(Dνvu
ν)
]

, (4.6)

where

Hµν = ~n · [~nµ × ~nν ] =
−2i

(1 + |u|2)2 (uµūν − uν ūµ), H2
µν =

8

(1 + |u|2)4 [(uµū
µ)2 − u2

µū
2
ν ]

(4.7)

and the covariant derivatives read Dµv = vµ − ieCµv, Dµv = v̄µ + ieCµv̄ and we expressed

the unit vector field by means of the stereographic projection

~n =
1

1 + |u|2
(

u+ ū,−i(u− ū), |u|2 − 1
)

.

Further,

Fµν ≡ ∂µCν − ∂νCµ

is the Abelian field strength tensor corresponding to the Abelian gauge field Cµ. Notice

that only the complex field v couples to the gauge field via the covariant derivative.

4.2 Self-dual equations

Now, we apply the CFNS decomposition to the self-dual equations. As we know the full

field strength tensor reads

~Fµν =
[

Fµν − (1 − |v|2)Hµν

]

~n+
1

2

[

(Dµv +Dµv)~nν − (Dνv +Dνv)~nµ

]

+ (4.8)

+
1

2i

[

(Dµv −Dµv)~nν × ~n− (Dνv −Dνv)~nµ × ~n
]

.

Therefore, using the self-dual equations (2.1) we get two expressions, one parallel and one

perpendicular to the color vector ~n

1

2
ǫµνρσ [F ρσ − (1 − |v|2)Hρσ] = Fµν − (1 − |v|2)Hµν (4.9)

– 9 –
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and

1

2
ǫµν

ρσ
[

[

(Dρv +Dρv)~nσ − (Dσv +Dσv)~nρ

]

(4.10)

−i
[

(Dρv −Dρv)~nσ × ~n− (Dσv −Dσv)~nρ × ~n
]

]

=
[

(Dµv +Dµv)~nν − (Dνv +Dνv)~nµ

]

+i
[

(Dµv −Dµv)~nν × ~n− (Dνv −Dνv)~nµ × ~n
]

.

For later convenience we now want to derive some constraints which result from these two

sets of equations. On the one hand, after projection on ~nµ, eq. (4.10) gives

(Dµv+Dµv)~n
µ·~nν−(Dνv+Dνv) ~n

2
µ−i(Dµv−Dµv)Hµν = −iǫµνλω(Dλv−Dλv)Hµω. (4.11)

On the other hand, if we multiply (4.10) by ×~nµ and project on ~n then we get

(Dµv−Dµv)~n
µ·~nν−(Dνv−Dνv) ~n

2
µ−i(Dµv+Dµv)Hµν = −iǫµνλω(Dλv+Dλv)Hµω. (4.12)

Both equations lead to the simple expression

Dνv(uµū
µ) − uν(Dµvū

µ) = ǫµνρσD
ρvuµūσ (4.13)

and its complex conjugate. This expression just constitutes a system of linear homogeneous

algebraic equations for the unknowns Dµv,

MµνD
µv = 0, Mµν = (uαū

α)δµν − uµūν − ǫµνρσu
ρūσ. (4.14)

In order to find all solutions of this system of equations we consider the corresponding

eigenvalue problem MµνD
µv = λDνv. Of course, a solution exists if and only if the

determinant vanishes

Det(M̂ − λI) = 0. (4.15)

On the other hand one can find that

Det(M̂ − λI) = λ(λ− uµū
µ)(u2

µū
2
ν − 2λuµū

µ + λ2). (4.16)

Generically there is a single eigenvalue λ = 0 corresponding to the solution

Dµv = fuµ, (4.17)

where f is an arbitrary function. However, if the complex field u obeys the complex eikonal

equation u2
µ = 0, then λ = 0 is a degenerate eigenvalue with degeneracy 2. In this case,

there exists a second solution. This second solution may be expressed more easily in terms

of real vectors. Indeed, if we write u = a+ib then the complex eikonal equation corresponds

to

aµbµ = 0 , a2
µ = b2µ. (4.18)

If we introduce analogously Dµv = cµ + idµ then the second solution is given by

aµcµ = bµcµ = aµdµ = bµdµ = cµdµ = 0 (4.19)

– 10 –
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and

c2µ = d2
µ. (4.20)

The vector Dµv = cµ+idµ is unique up to a multiplication by an arbitrary complex function,

as befits the solution to a complex, homogeneous linear equation. Conditions (4.19), (4.20)

imply that the complex vector Dµv has to obey

uµDµv = ūµDµv = 0 , DµvDµv = 0 (4.21)

in order to be a solution of the second type. We remark that a wide class of explicitly

known instanton configurations, like, e.g., the cylindrically symmetric solutions found by

Witten [34], belongs to this second case.

A further possibility, uαū
α = 0, which would lead to a even higher degeneracy, is

physically uninteresting since it leads to the trivial solutions u = const.

Taking into account formula (4.13) and its general solutions discussed above we find

three constraints which are satisfied by all self-dual configurations

(Dλvu
λ)(uβ ūβ) − (Dλvū

λ)u2
β = 0, (4.22)

(Dλv)
2(uβūβ) − (Dλvū

λ)(Dβvuβ) = 0, (4.23)

(DνvDνv)u
2
µ − (Dνvu

ν)(Dµvu
µ) = 0. (4.24)

4.3 Conserved currents

Following considerations presented, e.g., in [35]–[37], the family of conserved currents may

be constructed in the following form

jGµ = i(1 + |u|2)2
(

π̄µ
∂G

∂u
− πµ

∂G

∂ū

)

, (4.25)

where G is an arbitrary real function of the complex field u i.e., G = G(u, ū) and πµ is the

canonical momentum (A.1). The four-divergence reads (Gu ≡ ∂uG etc.)

∂µjGµ = i(1 + |u|2)2 [Gu∂µπ̄
µ −Gū∂µπ

µ +Guuuµπ̄
µ +Guūūµπ̄

µ −Gūuuµπ
µ −Gūūūµπ

µ] +

+2i(1 + |u|2)(uūµ + ūuµ)(Guπ̄
µ −Gūπ

µ). (4.26)

or

∂µjGµ = i(1 + |u|2)2
[

Gu

(

∂µπ̄
µ +

2u

1 + |u|2 ūµπ̄
µ

)

−Gū

(

∂µπ
µ +

2ū

1 + |u|2πµu
µ

)

+Guū(ūµπ̄
µ − uµπ

µ)

]

+i(1 + |u|2)2
[(

Guu +
2ūGu

1 + |u|2
)

uµπ̄
µ −

(

Gūū +
2uGū

1 + |u|2
)

ūµπ
µ

]

. (4.27)

Taking into account that ūµπ̄
µ = uµπ

µ and the pertinent field equations (1 + |u|2)∂µπ
µ +

2ūπµu
µ = 0 we get

∂µjGµ = i(1 + |u|2)2
[(

Guu +
2ūGu

1 + |u|2
)

uµπ̄
µ −

(

Gūū +
2uGū

1 + |u|2
)

ūµπ
µ

]

. (4.28)
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Due to the arbitrariness of the function G the currents are conserved if uµπ̄
µ = 0 and

ūµπ
µ = 0. These so-called integrability conditions introduce some new relations between

degrees of freedom and, in principle, do not have to be satisfied for all solutions of Yang-

Mills theory. However, it turns out that in the self-dual sector both conditions hold iden-

tically. To prove it observe that

ūµπ
µ =

8

(1 + |u|2)2
[

(DνvDνv)ū
2
µ − (Dνvū

ν)Dµvū
µ
]

, (4.29)

where we have used the antisymmetry of Fµν and Kµū
µ ≡ 0 (where Kµ is defined in (A.3)).

The resulting expression is just the complex conjugate of formula (4.24) and therefore equals

zero for all configurations of the self-dual sector.

The charges corresponding to the currents (4.25) are

QG ≡
∫

d3xjG0 (4.30)

and obey the algebra of area-preseving diffeomorphisms on the target space two-sphere

spanned by the field u under the Poisson bracket, where the fundamental Poisson bracket

is (with x0 = y0)

{u(x), π(y)} = {ū(x), π̄(y)} = δ3(x − y), (4.31)

as usual. Explicitly, the algebra of area-preserving diffeomorphisms is

{QG1 , QG2} = QG3 , G3 = i(1 + |u|2)2(G1,ūG2,u −G1,uG2,ū). (4.32)

Finally, let us remark that the currents (4.25) are invariant under the residual U(1) gauge

transformations that remain after the partial gauge fixing implied by the CFNS decompo-

sition, see eq. (4.5).

4.4 Trivially conserved currents

Using this method we are able to construct more families of infinitely many conserved

quantities in self-dual Yang-Mills theory, which are based on other canonical momenta.

They are given by the expressions

jHµ = P̄µ
∂H

∂v
− Pµ

∂H

∂v̄
, (4.33)

jG̃µ = ωµν

(

∂G̃

∂u
uν +

∂G̃

∂ū
ūν

)

, (4.34)

jH̃µ = ωµν

(

∂H̃

∂v
Dνv +

∂H̃

∂v̄
Dνv

)

, (4.35)

where the function H = H(u, ū, vv̄) while the functions G̃, H̃ depend on the moduli only

G̃ = G̃(uū, vv̄), H̃ = H̃(uū, vv̄). However, all these currents are trivially conserved. To see

this let us analyze the first family in detail. First of all observe that it may be written as

jHµ = H ′(v̄P̄µ − vPµ) (4.36)

– 12 –
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where the prime denotes the derivative w.r.t. vv̄, and Pµ is defined in eq. (A.4) . Using the

self-dual equations we find that

jHµ =
8H ′

(1 + |u|2)2
(

ǫαµβγu
α(v̄Dβv + vDβv)ūγ

)

=
8H ′

(1 + |u|2)2
(

ǫαµβγu
α(v̄vβ + vv̄β)ūγ

)

.

(4.37)

Therefore, these currents are conserved entirely due to the antisymmetry of the ǫαµβγ

tensor. Analogously one can check that the two remaining families are trivially conserved,

as well.

5. Conclusions

The main achievement of the present paper is the derivation of a new family of infinitely

many conserved currents for the self-dual sector of classical SU(2) YM theory. This has

been accomplished by a combination of techniques developed in the so-called generalized

integrability (generalized zero curvature) formulation with a nonlocal transformation of

the original gauge degrees of freedom (CFNS decomposition). This alternative procedure

provides currents with rather different properties than the previously known ones.

First of all, all calculations are done in a completely covariant manner. Therefore, the

obtained currents are conserved for the self-dual sector of SU(2) YM in space-times in any

dimension with a completely arbitrary signature.

Secondly, these new currents have a more standard geometrical origin. They are the

Noether currents corresponding to the area preserving diffeomorphisms on the two dimen-

sional target space. Therefore they obey the classical diffeomorphism algebra instead of the

Kac-Moody or Virasoro ones. Also, the relation between conservation laws and symmetries

is different in our case. Although the currents we found generate area-preserving diffeo-

morphisms on target space, this does not imply that these diffeomorphisms are symmetries

of the SDYM equations. The reason is that the SDYM equations in the CFNS decomposi-

tion are not Euler-Lagrange, therefore the Noether theorem does not apply (observe that

the canonical momenta are derived from the Lagrangian of the original Yang-Mills system,

which gives rise to the full Yang-Mills equations).

Thirdly, the currents derived here are given in an explicit form. This is an advantage

in comparison with the currents of Prasad and Papachristou, which are given in a more

complicated, iterative way and are, therefore, not so easy to work with.

Finally, let us briefly mention some possible generalizations and further directions of

future investigations. On the one hand, the procedure employed here is based on the

generalized zero curvature condition of ref. [24], which is not restricted to the SDYM. It

has been and will be used to detect further integrable sectors in different field theories.

On the other hand, recently other nonlocal decompositions of Yang-Mills theory have been

proposed, like, e.g., the spin-charge separation of [38]–[39]. It is an interesting question

whether these decompositions allow to detect further conservation laws in SDYM. This

problem is under current investigation.

– 13 –
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A. Canonical four momenta and field equations

Here we calculate the canonical momenta

πµ =
∂L

∂uµ
= 8i

1 − |v|2
(1 + |u|2)2Fµν ū

ν + 16
(1 − |v|2)2
(1 + |u|2)4Kµ

+
8

(1 + |u|2)2
[

(DνvDνv)ūµ − (Dνvūν)Dµv
]

, (A.1)

π̄µ =
∂L

∂ūµ
= −8i

1 − |v|2
(1 + |u|2)2Fµνu

ν + 16
(1 − |v|2)2
(1 + |u|2)4 K̄µ

+
8

(1 + |u|2)2
[

(DνvDνv)uµ − (Dνvuν)Dµv
]

(A.2)

where

Kµ = (uν ū
ν)ūµ − ū2

νuµ (A.3)

and

Pµ =
∂L

∂vµ
=

8

(1 + |u|2)2
[

(uν ū
ν)Dµv − (Dνvuν)ūµ

]

, (A.4)

P̄µ =
∂L

∂v̄µ
=

8

(1 + |u|2)2 [(uν ū
ν)Dµv − (Dνvūν)uµ] (A.5)

and finally

ωµν =
∂L

∂(∂µCν)
= 4

(

Fµν − (1 − |v|2)Hµν

)

. (A.6)

The pertinent equations of motion for the complex u field read

∂µπ
µ = Lu = −16iū

1 − |v|2
(1 + |u|2)3F

µνuµūν − 4 · 8ū (1 − |v|2)2
(1 + |u|2)5

[

(uµū
µ)2 − u2

µū
2
ν

]

− 16ū

(1 + |u|2)3
[

(uµū
µ)(DνvDνv) − (Dµvūµ)(Dνvu

ν)
]

(A.7)

∂µπ̄
µ = Lū = −16iu

1 − |v|2
(1 + |u|2)3F

µνuµūν − 4 · 8u (1 − |v|2)2
(1 + |u|2)5

[

(uµū
µ)2 − u2

µū
2
ν

]

− 16u

(1 + |u|2)3
[

(uµū
µ)(DνvDνv) − (Dµvūµ)(Dνvu

ν)
]

, (A.8)
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while for the complex v field we get

∂µP
µ = Lv =

−8iv̄

(1 + |u|2)2F
µνuµūν +

2 · 8v̄(1 + |v|2)
(1 + |u|2)4

[

(uµū
µ)2 − u2

µū
2
ν

]

+

+
−8ie

(1 + |u|2)2
[

(uµū
µ)(CνDνv) − (Cµūµ)(Dνvu

ν)
]

(A.9)

∂µP̄
µ = Lv̄ =

−8iv

(1 + |u|2)2F
µνuµūν +

2 · 8v(1 + |v|2)
(1 + |u|2)4

[

(uµū
µ)2 − u2

µū
2
ν

]

+

+
8ie

(1 + |u|2)2 [(uµū
µ)(CνDνv) − (Cµuµ)(Dνvu

ν)] . (A.10)

The equation for the Abelian gauge field has the form

∂µω
µν =

∂L

∂Cν
=

−8ie

(1 + |u|2)2
{

(uµū
µ)
[

vDνv − v̄Dνv
]

− vūν(Dµvu
µ) + v̄uν(Dµvū

µ)
}

.

(A.11)
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